
Reference Guide

Generic Header Manipulation
&

Regular Expressions

For the Ingate SIParators® and Firewalls using software release 4.10.x or later.

This document assumes a basic understanding of regular expressions and their behaviour.

11/12/21

Revision History:
Revision Date Author Comments
… … … …
15 2020-01-20 PD Complete re-write. “variable

substitution” “Header Access
Variables”. Reduction
Normalization. CHM CHO.

16 2020-04-26 PD Tagged new 6.3 features
18 2020-10-16 PD $(body.plain) and response (?!)

corrections, HAV corrections.
19 2020-11-02 PD Fix methods tag
20 2020-12-09 PD Added $(count… call count variables

plus minor fixes and adjustments
21 2021-11-12 PD Clarify indices usage

File name: How_To_use_Generic_Header_Manipulation_21K.docx

Page 1 of 61

Table of Contents
Errata for Ingate <= 5.0.11..5

1 Introduction..6
1.1 Example...6
1.2 How?...6
1.3 Why GHM?..7
1.4 Where do I use GHM?...7
1.5 What can I do with GHM?...7

2 Where to configure GHM..8
2.1 SIP Traffic – Dial Plan...9
2.2 Regexp match – Matching From Header...9
2.3 Regexp match – Matching R-URI...9
2.4 Regexp substitution and GHM – Forward To...9
2.5 SIP Traffic – Routing..10
2.6 SIP Trunk – Trunk 1-n..10
2.7 Incoming messages...11
2.8 Outgoing messages...12

3 Regular Expressions – matching your input...14
3.1 Introduction..14
3.2 Explanation..15
3.3 Standard regular-expression notation...15
3.4 Escape special characters..16
3.5 Routing calls using the Dial Plan and the SIP trunk Page...16
3.6 Example Regular Expressions in the Matching From Header..17
3.7 Regular Expressions in the Matching Request URI..17
3.8 Regular Expressions in the Forward To...20
3.9 Examples of Basic Regular Expressions...20
3.10 Additional information..21

4 Special Tags in the Ingate Firmware..22
4.1 Rewrite From header on egress..22
4.2 183 to 180 conversion...22
4.3 Do not REGISTER to trunk server(s)...22
4.4 Do not automatically monitor trunk server(s) with SIP OPTIONS..23
4.5 Force B2BUA on..23
4.6 B2BUA with media via the main dial plan...23
4.7 Explicitly state transport...23
4.8 Specifying Escape Characters (dial string) for e.g. Telia SIP trunk...24
4.9 Explicitly handle only specific METHODS...24
4.10 Force a specific response, e.g. 503, 5xx, 6xx...24
4.11 Support q-value in Trunk User Name..25
4.12 Support parallel forward in the dial-plan..26

5 Header Access Variables..27
5.1 Headers...27
5.2 Body Access Variable...28

How To Guide: Generic Header Manipulation & Regular Expressions Page 2 of 61

5.3 The difference between $(x.user) and $([x.user])...28
5.4 Port and Password..29
5.5 Indices, indexes, [?]...29
5.6 Example equivalences of a From header (built using HAV)...30
5.7 Examples...31

6 Call Count Variables..32
6.1 Call Counters...32
6.2 Call Count Logic...32

7 Conditionals..34
7.1 Conditional Regular Expressions (CRE)..34
7.2 Conditional Header Output (CHO) and Conditional Body Output (CBO)...39
7.3 Conditional Test (CT)...40
7.4 Conditional Results (CR)..43
7.5 Conditional Actions (CA)..44
7.6 Conditional Output (CO)..45
7.7 Conditional Header Output (CHO) examples...46
7.8 URI Parameter Chaining..49
7.9 Keyword / Grammar and Syntax Summary for CHO and CRE..50

8 Generic Header Manipulation (GHM)..51
8.1 GHM for Requests(?...&…)..52
8.2 GHM for Responses(?!...&!...)...53
8.3 GHM for Requests (?...&…) and Responses(?!...&!) combined in one expression.............................54
8.4 Multiple Occurrences of the same Header..54
8.5 Header Access Variables..55

9 Supplementary examples from real-world support cases..57

How To Guide: Generic Header Manipulation & Regular Expressions Page 3 of 61

Terminology used in this document:

Text written in a Monospace Font generally signifies regular expression code i.e. GHM, CHO,
CRE, HAV or their in/output, i.e. SIP URIs.

Note: Samples in this document are not guaranteed to be protocol-accurate or compliant; they are
intended for demonstration only and are often reduced for simplicity.

How To Guide: Generic Header Manipulation & Regular Expressions Page 4 of 61

Abbreviation Term
GHM Generic Header Manipulation
CRE Conditional Regular Expressions
CHO Conditional Header Output
CHM Conditional Header Manipulation
B2BUA Back to Back User Agent
ITSP Internet Telephony Service Provider
HAV Header Access Variables

Errata for Ingate <= 5.0.11:

You’re using an old firmware – upgrade!

Note: In firmware versions <= 5.0.11 you cannot use $1?From=$(...$1...) – i.e. regexp
capture result groups (on the trunk page i.e. where $1 is before and after the “?”), and $REGMATCH
expressions which also contain their own $1 capture groups. The workaround is to use $0?From=$
(...$1...). The fix is to upgrade to >= 6.0.1.

Expressions such as the following will fail to evaluate:

sip:$1@192.168.1.1?From=%3Csip%3a$(REGMATCH_^001([0-9]{10})
$_REGMOD_+1$1_REGELSE_^1([0-9]{10})$_REGMOD_+1$1_REGELSE_([0-9]
{10})$_REGMOD_+1$1_REGEND.from.user)%40$(from.host)$
([from.uriparams]) %3E$(from.params)

A workaround is thus:

sip:$0?From=%3Csip%3a$(REGMATCH_^001([0-9]{10})
$_REGMOD_+1$1_REGELSE_^1([0-9]{10})$_REGMOD_+1$1_REGELSE_([0-9]
{10})$_REGMOD_+1$1_REGEND.from.user)%40$(from.host)$
([from.uriparams]) %3E$(from.params)

$0 evaluates to the whole user portion of the RURI on the trunk page.

Or not to use a capture group on the trunk page e.g.
Incoming Trunk Match Forward to
(.*) $1

While instead use:
Incoming Trunk Match Forward to
.* $0

If a fix is necessary e.g. you must forward trunk captures to a host which differs from the PBX
configured on the trunk page, write to support@ingate.com for a patch for your current firmware
version <= 5.0.11, or upgrade your firmware > 5.0.11

How To Guide: Generic Header Manipulation & Regular Expressions Page 5 of 61

mailto:support@ingate.com

1 Introduction

This document describes how to use Generic Header Manipulation (GHM) and Regular Expressions
(RegEx) in an Ingate SIParator/Firewall. With the GHM feature it is possible to Add, Change or
Remove any Header in SIP Requests and Responses.

1.1 Example
An ITSP requires the presence of a P-Asserted-Identity Header as part of authorization and
the IP-PBX does not provide it. As seen here (ingress):

INVITE sip:6135551212@209.216.177.59:5060 SIP/2.0
Via: SIP/2.0/UDP 209.249.3.100:5060;branch=z9hG4bK9624349
To: sip:6135551212@209.249.3.56:5060
From: <sip:5035551111@209.249.3.100>;tag=3462103187-665679
Supported: timer, 100rel
Call-ID: 2165939-3462103187-665672@NXT02.broadvox.net
CSeq: 1 INVITE
Allow: INVITE, BYE, OPTIONS, CANCEL, ACK, REGISTER, PRACK, UPDATE
Max-Forwards: 69
Session-Expires: 3600;refresher=uac
Contact: sip:5035551111@209.249.3.100:5060
Content-Type: application/sdp
Content-Length: 249

The Ingate adds the header to the SIP message upon forward (egress) to the ITSP:

INVITE sip:6135551212@209.216.177.59:5060 SIP/2.0
Via: SIP/2.0/UDP 209.249.3.100:5060;branch=z9hG4bK9624349
To: sip:6135551212@209.249.3.56:5060
From: <sip:5035551111@209.249.3.100>;tag=3462103187-665679
Supported: timer, 100rel
Call-ID: 2165939-3462103187-665672@NXT02.broadvox.net
CSeq: 1 INVITE
Allow: INVITE, BYE, OPTIONS, CANCEL, ACK, REGISTER, PRACK, UPDATE
Max-Forwards: 69
Session-Expires: 3600;refresher=uac
Contact: sip:5035551111@209.249.3.100:5060
P-Asserted-Identity:sip:5035551111@64.156.174.74
Content-Type: application/sdp
Content-Length: 249

Note: The above is also performed on the trunk page by filling in the Identity column with
5035551111@64.156.174.74.

1.2 How?
The following GHM expression can do the modification to make the above SIP request:

?P-Asserted-Identity=sip%3a$(from.user)%4064.156.174.74

How To Guide: Generic Header Manipulation & Regular Expressions Page 6 of 61

Where ? signifies a GHM – read more about these in the section Generic Header Manipulation
(GHM). P-Asserted-Identity is the name of the header you wish to Manipulate – in this case,
create, or add to your egress SIP. $(from.user) is a variable. Read more about these in the
section Header Access Variables.

1.3 Why GHM?
The purpose of GHM is to enhance the interoperability between different vendor equipment
scenarios, as IP-PBX, Service Providers, and SIP enabled device OEMs implement SIP standards
differently. GHM can normalize deviations.

With regular expressions, it is possible to match content from ingress SIP messages. When
forwarding SIP messages, they can be rewritten to your specification. Header Access Variables make
it possible to read information from a header at ingress in order to construct a new or replacement
header at egress.

1.4 Where do I use GHM?

Rules are configured in the Dial Plan and SIP Trunk Page GUIs. The rules are configured in the same
fields as regular expressions are written, i.e. telephone numbers, SIP from and to addresses. Read
more about this in the section Where to configure GHM.

1.5 What can I do with GHM?

The GHM feature makes it possible to Add, Re-write or Delete any SIP Header of incoming or
outgoing SIP messages, both Requests (Methods: INVITE, ACK, …) and Responses (180
Ringing, 200 OK, …). GHM does not yet allow for write manipulation of individual parts of the
ingress SIP header itself, but requires that a new header be created based on parts of SIP headers at
ingress, and from arbitrary strings.

The following list summarizes available GHM actions:
 Add a header to an egress message, where a header doesn’t exist at ingress
 Modify header content (by writing a new header)
 Replace an instance of a header
 Pass a header unchanged
 Delete a single or multiple instances of a header
 Delete multiple headers

Additionally, all listed actions can be done conditionally – i.e. check for a matching condition, and
then act if the condition is met. Header manipulation for requests are performed after routing of calls,
while responses are modified prior to routing.

How To Guide: Generic Header Manipulation & Regular Expressions Page 7 of 61

2 Where to configure GHM

Regexp matches of SIP are configured in the below listed locations within the Ingate
Firewall/SIParator, marked with blue, below.

Regular Expression match
SIP Traffic > Dial Plan
Matching From Header – Reg Expr
Matching Request-URI – Reg Expr

SIP Trunks > Trunk n page
Main Trunk Line – Incoming Trunk Match

PBX Lines – From PBX Number/User and
Incoming Trunk Match
SIP Lines – From SIP Number/User and
Incoming Trunk Match

Regexp substitution and GHM of SIP are configured in destination fields, i.e. the Forward To fields
in the below listed locations within the Ingate Firewall/SIParator, marked with red, below.

Regular Expression Substitution and GHM
SIP Traffic > Dial Plan
Forward To – Reg Expr

SIP Traffic > Routing
User Routing – Forward To
Static Registrations – Forward To
SIP Trunks > Trunk n page
Main Trunk Line – Username and Forward

PBX Lines – Username and Forward To PBX
Account
SIP Lines – Username and Forward To SIP
Account

How To Guide: Generic Header Manipulation & Regular Expressions Page 8 of 61

2.1 SIP Traffic – Dial Plan

2.2 Regexp match – Matching From Header

The Matching From Header matches source SIP URI, source Transport, and Network Address. In the
Regular Expression, your expression defines matches for the From Header SIP URI of SIP messages.
For a request to match, all criteria must be fulfilled.

2.3 Regexp match – Matching R-URI

The Matching Request URI matches the incoming Request URI Header of ingress SIP messages.
Typically, the “domain” portion of the URI is the Ingate IP Address or FQDN. Port and Transport
can be used, but a match only occurs if both port and transport parameters are in the SIP RURI.

2.4 Regexp substitution and GHM – Forward To

The Forward To attribute of the Dial Plan defines where to send the SIP traffic. A specific
destination SIP URI address is defined to forward the call to. Here you may enter Regular
Expressions for the Dial Plan, used to define where the Ingate should forward the request using the
Dial Plan. Here you define GHM and use HAV.

How To Guide: Generic Header Manipulation & Regular Expressions Page 9 of 61

2.5 SIP Traffic – Routing

With Static Registrations, a certain user@address will additionally be redirected (forked) to another
or more user@address. Even if an address is configured to be forwarded, the SIParator will contact
the original addressee.

In the respective Forward To field you may use HAV and GHM, but not regular expressions.

2.6 SIP Trunk – Trunk 1-n

Remember: blue = match, red = substitute and GHM

From PBX/SIP Number/User - A regular expression – matches PBX extension, or user. For
outgoing calls from the PBX to the ITSP, this field matches the From SIP URI. The row that matches
first, is used for the outgoing call.

User Name - The SIP user name or phone number to use in the From SIP URI for outgoing calls and
registrations towards the ITSP. This is often the telephone number of the ITSP SIP account and

How To Guide: Generic Header Manipulation & Regular Expressions Page 10 of 61

usually the number displayed as caller ID on the PSTN. Here, you can use the result of a sub-
expression from a match in a regular expression defined in the "From Number/User" field on the
same row.

Identity – This field is for filling a P-Asserted-Identity or P-Preferred-Identity
header in egress messages to your ITSP. You can choose on the trunk page which of the above two
variants is sent.

Note: The GHM $1?P-Asserted-Identity=__remove removes P-Asserted-Identity
headers from ingress messages upon egress.

2.7 Incoming messages
The SIP Trunk page is designed to connect IP-PBXs and other SIP endpoints (phones) to an ITSP
SIP Trunking service (using a B2BUA) with one interface to the ITSP and the other to the IP-PBX
and SIP phones.

For

incoming SIP messages, the rules for header manipulation of SIP messages are configured in the GUI
for the SIP Trunk Page, in the columns of Incoming Trunk Match and Forward to for PBX Lines,
SIP Lines, and Main Trunk Line.

For every incoming SIP INVITE, each row in the column Incoming Trunk Match, for PBX Lines
and SIP Lines, is checked until match. No match? The values from Main Trunk Line are used.

How To Guide: Generic Header Manipulation & Regular Expressions Page 11 of 61

ITSP

WANLAN

SIP trunk page
Incoming Trunk Match Forward to

Main trunk line

PBX lines

SIP lines

When there is a match in Incoming Trunk Match field, the call will be forwarded according to the
values in the respective Forward to field of the same row.

For PBX Lines, this is a user to which an incoming call from the ITSP will be forwarded to on the
PBX.

For SIP Lines, this is an arbitrary SIP URI or a SIP user at a domain configured under Local
Registrar, to which an incoming call will be forwarded.

Regular expressions can be used in the Incoming Trunk Match field to catch information from the
R-URI to be used in the Forward to field, where also HAV and GHM can be made.
An example of a regular expression is:

Incoming Trunk Match Forward to
\+1306(7707[0-9]{2}) 0$1
\+1306(7707[0-9]{2}) 0$1;user=phone

This will result in an incoming call to +1306770713, forwards to the PBX number 0770713. Here
you may also add URI parameters such as ";user=phone" at the end of the domain of a complete
URI.

2.8 Outgoing messages

Outgoing calls are processed through the Dial Plan. The Dial Plan table is searched line by line from
the top for a match from the PBX of the dialed number, where a SIP Trunk page is selected.

At the SIP Trunk Page, the caller’s number (the user part of the From header) will - row by row, from
top to bottom - be checked against the numbers or regular expressions entered in the column From
PBX/SIP Number/User. A match will cause the trunk account under User Name to be used for the
outgoing call.

How To Guide: Generic Header Manipulation & Regular Expressions Page 12 of 61

The results of subexpressions from a match in the column From PBX/SIP Number/User can be used in
the columns Display Name, User Name and Identity.

Display Name – This field modifies the "display" portion of your egress From header. E.g.
entering look at me in the Display Name field gives:

From: "look at me" <sip:alpha@some.com>;tag=99

User Name – This field modifies the user portion of your egress From header. E.g. entering
no_wait_look_at_me in the User Name field gives:

From: <sip:no_wait_look_at_me@some.com>;tag=64

Identity – This field adds a P-Asserted-Identity or P-Preferred-Identity header in
egress messages to your ITSP. You choose on the trunk page which of the above two variants is sent.
E.g. entering bravo@real.com in the Identity field gives:

From: "Display" <sip:alpha@fake.com>;tag=27
P-Asserted-Identity: bravo@real.com

Note: The GHM $1?P-Asserted-Identity=__remove when placed in any of the above
three fields removes P-Asserted-Identity headers from ingress messages (e.g. from PBXes)
upon egress.

To understand how GHM works it is first necessary to understand how regular expressions are used,
see the chapter Regular Expressions – matching your input.

How To Guide: Generic Header Manipulation & Regular Expressions Page 13 of 61

3 Regular Expressions – matching your input

Within the SIP Protocol (RFC 3261), a SIP URI identifies a communications resource. Like all URIs,
SIP URIs may be placed in web pages, email messages, or printed literature. They contain sufficient
information to initiate and maintain a communication session with the resource. In its simplest form a
SIP URI looks like sip:user@host, where the user is the identifier of a particular client
resource at the host being addressed. The term host in this context frequently refers to a domain, a
network location.

Regular expressions increase the capabilities of the Ingate Dial Plan and SIP trunk. The Regular
Expression is used to match the user, host and other parts of the SIP URI.

3.1 Introduction

Why regular expressions? To find our input! Then once we’ve matched (found) what we are looking
for, do something with it. Perhaps you’ve encountered command-line tools such as sed, or awk.
They all use regular expression notation. Let’s say we want to find the text string:

small fluffy dog

Then once we’ve found it, modify it. We want to modify it to:

big fluffy dog

We don’t want to do this manually every time – we want to automate this, and be sure that our
automation will process only exactly those matches we are looking for – no more, no less. Now we
know what we want to do – we just need to generalise, or specify, our regular expression which will
look for matches. These regular expressions go in fields marked in BLUE in the section Where to
configure GHM :

small (fluffy dog)

Let’s say that we now have a match. Let’s use a regular expression substitution – this is just a text
string which expresses what we captured, at the earlier step, and includes any new, additional custom
text – these regular expression substitutions go in fields marked in RED in the section Where to
configure GHM:

big $1

This is the same process when dealing with SIP and telephone numbers. Identify the nature of the
request (country code for least cost routing? is it an emergency number?):

sip:+46812345678@xyzcorp.com

Then once we’ve found it, we want to modify it to:

sip:0812345678@xyzcorp.com

How To Guide: Generic Header Manipulation & Regular Expressions Page 14 of 61

sip:user@host

We might do that with this regular expression:

sip:\+46([0-9]{9})@xyzcorp.com

Then get our intended result with the following regular expression substitution:

sip:0$1@xyzcorp.com

3.2 Explanation

(.*) Matches and stores any amount of characters in $1
sip:(.*)@(.*) Match and store user in $1 and host in $2 if applied to input string
sip:user@host

Sub-expressions are ordinal to their starting parenthesis and referred to by $number. In other words,
the order and hierarchy of the parentheses determines the regular expression substitution order E.g.

Expression Matches String Produces
(((dog) pig) cat) dog pig cat $0 = dog pig cat

$1 = dog pig cat
$2 = dog pig
$3 = dog

In the expression sip:(.*)@(.*) which matches any Request-URI like
sip:user@ingate.com, there are two referable sub-expressions: user, which is held in $1, and
ingate.com, which is held in $2.

Sub-expressions can also be nested, as in the expression (sip:(.*))@ingate.com, which
matches any Request-URI like sip:user@ingate.com, there are two referable sub-expressions:
sip:user, which is referred to as $1, and user, which is referred to as $2.

3.3 Standard regular-expression notation
The Regular Expression flavor used in Ingate SIParator/Firewall is “POSIX Extended Regular
Expressions (ERE)”.
Note: Character matches are case sensitive.
Operator Description
[] Matches any single character that is contained within the brackets. For example:

[abc] Matches any single character in the set a, b, or c.
[a-z] Matches any single character in the range a-z but not A-Z
[1-8] Matches any single character in the range 1 to 8.
[369] Matches any single character in the set 3, or 6, or 9.

[^] Matches any single character that is not contained within the brackets. For example:
[^abc] Matches any single character not in the set a, b, or c.

. Matches any single character.
, Matches the minimum specified characters or more.
[0-9] Matches any decimal digit.
[^0-9] Matches any non-digit.

How To Guide: Generic Header Manipulation & Regular Expressions Page 15 of 61

sip:user@host

\s Matches any whitespace character.
\S Matches any non-whitespace character.
\w Matches any word (alphanumeric) character.
\W Matches any non-word (alphanumeric) character.
(abc) (abc) Matches the sequence abc and stores it as a variable which may be used in

later expressions. (and) are also used for grouping.
$1 The $ symbol is used to recall expressions that have been stored via ()-variables which

are numbered according to the capture hierarchy. $1 refers to the first variable stored,
and $2 refers to the second variable stored, etc.

a|b Matches a or b
+ Matches the preceding expression one or more times.
? Makes preceding expression optional; if the preceding is inside () brackets, e.g.

(345)? then that 345 is optional.
* Matches the null string or any number of repetitions of the preceding expression.
{m} Matches exactly m repetitions of the preceding expression.
{m,n} Matches from m to n (inclusive) repetitions of the preceding expression.
{m,} Matches m or more repetitions of the preceding expression.
^ Matches the start of the string.
$ Matches the end of the string.

3.4 Escape special characters
Meta characters are characters with a special meaning in Regular Expressions. There are a number of
characters with special meanings: \ ^ $. | ? * + () [] { } . If you want to use any
of these characters as a literal in a Regular Expression (i.e. to find these exact characters in a source
string), you need to escape them in your RegExp by using a backslash. For example, + is escaped as
\+ and so to match +46701234567 we use \+46701234567.

Expression Does Not Match String Produces
sip:+46(5552345)@corp.com sip:

+465552345@corp.com
$1 =

Expression Matches String Produces
sip:\
+46(5552345)@corp.com

sip:
+465550505@corp.com

$1 =
5550505

Why? In the expression sip:+46 the portion + is a quantifier for the colon character, so :+ looks
for 1 (one) colon character.

3.5 Routing calls using the Dial Plan and the SIP trunk Page
The dial plan and the SIP Trunk pages dictate how to route calls. From whom to accept calls, and to
where to send calls. Using regular expressions in the dial plan and the SIP trunk page allows you to
generically specify a range of numbers, range of domains, or other set of specific digits.

How To Guide: Generic Header Manipulation & Regular Expressions Page 16 of 61

Regular expressions are a flexible way of delivering patterns that match a unique set of criteria. For
example, if you specify the regular expression [0-9]{7,} Ingate Firewall/SIParator recognizes
seven or more instances of digits zero to nine. In other words, a telephone number.

3.6 Example Regular Expressions in the Matching From Header
The purpose of the Matching From Header table is to narrow the source selection at ingress. It
exclusively examines the From header.

SIP URI Example Description Equivalent Regular Expression

7-digit number @ Any Domain or IP
7-digit number @ IP Address
7-digit number @ Domain

sip:[0-9]{7}@.*
sip:[0-9]{7}@12.34.56.78
sip:[0-9]{7}@sip_domain.com

North American Toll-free number: 1+800, 1+866,
1+877, 1+888+7 digits @

sip:18(00|66|77|88)[0-9]
{7}@

7-digit number, beginning with optional 9 @ sip:9?[0-9]{7}@

4-digit number (as an extension) starting with 5 @ sip:5[0-9]{3}@

4-digit number not starting with 36 @ sip:(?36)[0-9]{4}@

Anyone @ Anywhere
Anyone @ IP Address
Anyone @ Domain

sip:.*@.*
sip:.*@12.34.56.78
sip:.*@sip_domain.com

7-digit numbers within the London area codes 0207
and 0208@

sip:020[78][0-9]{7}@

7-digit number with 0845 prefix @ 6 to 7-digit
number with 0845 prefix @
6-digit number with 0845 prefix @

sip:0845[0-9]{7}@
sip:0845[0-9]{6,7}@
sip:0845[0-9]{6}@

7-digit number with 0845 or 0870 prefix @
Note: the first will also match 0875 or 0840, the
second won’t

sip:08[74][05][0-9]{7}@
sip:(0870|0845)[0-9]{7}@

Any 9 to 10-digit numbers prefixed with optional 00
and then mandatory 44

sip:0?0?44[0-9]{9,10}@

From Ingate >= 6.2.0, RegEx matches captured via the Matching From Header table can be later
accessed in the Forward To RegExp field via $fx, i.e. $f1, $f2 etc where f signifies From. For
example:

Expression Matches String Produces
sip:(5552345)@corp.com sip:5552345@corp.co

m
$f1 =
5552345

sip:(555([0-9]
{4}))@corp.com

sip:5550505@corp.co
m

$f1 =
5550505
$f2 = 0505

How To Guide: Generic Header Manipulation & Regular Expressions Page 17 of 61

3.7 Regular Expressions in the Matching Request URI
The purpose of the Matching Request-URI table is to match a Request URI of the SIP messages at
ingress to determine where it wants to go. To effectively determine routing. It exclusively examines
the Request URI of ingress SIP requests (INVITE, REGISTER, …).

Typically, the "domain" portion of the URI is the Ingate IP Address or FQDN. Port and Transport
can be specified, but the RegExp will only produce matches if both port and transport parameters
exist in a URI at ingress.

SIP URI Example Description Equivalent Regular Expression

7-digit number @ Any Domain
7-digit number @ IP Address
7-digit number @ Domain

sip:([0-9]{7})@.*
sip:([0-9]{7})@12.34.56.78
sip:([0-9]{7})@sip_domain.com

Emergency numbers 112 or 999 @
Warning: not all SIP providers have access to
emergency service numbers.

sip:112|999@

North American Toll-free number: 1+800,
1+866, 1+877, 1+888+7 digits @

sip:18(00|66|77|88)[0-9]{7}@

7-digit number, beginning with optional 9 sip:9?[0-9]{7}@

4-digit number starting with 5 sip:5[0-9]{3}@

4-digit number not starting with 36 @ sip:(?36)[0-9]{4}@

Remove Prefix "1613" on any Username @
Anything
$1 is provided by (.*) i.e. 1613 is matched but
not stored. If the number doesn't begin "1613",
there will be no match.

sip:1613(.*)@.*

Remove optional Prefix "+" on any Username
@
Note: the "+" character is escaped to match

sip:\+?(.*)@

Any Username @ Any Domain with Port and
Transport – case sensitive
Any Username @ IP Address with Port and
Transport – case sensitive
Any Username @ Domain with Port and
Transport – case sensitive

sip:(.*)@.*:5060;transport=UDP
sip:
(.*)@12.34.56.78:5060;transport=
UDP
sip:
(.*)@sip_domain.com:5060;transpo
rt=UDP

7-digits within area codes 0207 and 0208@ sip:020[78][0-9]{7}@

7-digit number with 0845 prefix @
6 to 7-digit number with 0845 prefix @

sip:0845[0-9]{7}@
sip:0845[0-9]{6,7}@

6-digit or longer number with 0870 prefix @ sip:0870[0-9]{6,}@

7-digit number with 0845 or 0870 prefix @
Note: the first can also match 0875 or 0840, the
second won’t

sip:08[74][05][0-9]{7}@
sip:(0870|0845)[0-9]{7}@

How To Guide: Generic Header Manipulation & Regular Expressions Page 18 of 61

Any 9 to 10-digit numbers prefixed with
optional 00 and then mandatory 44

sip:0?0?44[0-9]{9,10}@

Optional 353 prefix with or without optional 00
start, then optional 0 with optional 1-2 digit
area code, then mandatory 7-digit number @
any domain.
Note: The following URIs will match:
sip:0035312345678@abc.com
sip:35312345678@asdf.com
sip:12345678@asdf.com
sip:2345678@abc.com
sip:012345678@domain.com
sip:0212345678@wherever

sip:(((00)?353)?0?[0-9]{1,2})?
([0-9]{7})@.*

Note: in all of the above expressions, there is no match if the RURI isn't pre-pended with sip:, i.e.
requests beginning with tel: will not match. Also, while sip: is matched, it isn't stored in any of
the above examples. Any SIP RURI at ingress which is not prefixed with sip: is not a valid SIP
URI.

RegEx matches captured via the Matching Request-URI table can be later accessed in the Forward
To RegExp field via $x, i.e. $1, $2.

3.7.1 Examples for a trunk

Let’s say we own the trunk series 5550140 – 5550159, i.e. a range of twenty different extensions, 40-
59. We want an expression which will match the range of 20 extensions, but only 20 extensions, and
not 00-39 or 60-99.

Expression Matches Strings Produces
sip:(55501[0-9][0-9])@xy.com sip:5550100@xy.com

sip:5550163@xy.com
sip:5550199@xy.com

$1 =
5550100
$1 =
5550163
$1 =
5550199

sip:(55501([4-5][0-9]))@xy.co
m

sip:5550140@xy.com $1 = 555140
$2 = 40

sip:(55501([4-5][0-9]))@xy.co
m

sip:5550159@xy.com $1 = 555159
$2 = 59

As a result, the appropriate regular expression in this worked case is either of the last two
expressions.

3.7.2 Special Expressions for captures made in Request-URI

From Ingate >= 6.2.0, RegEx matches captured via the Matching Request-URI table can also be later
accessed in the Forward To RegExp field via $rx, i.e. $r1, $r2 etc where r signifies R-URI. For
example:

Expression Matches String Produces

How To Guide: Generic Header Manipulation & Regular Expressions Page 19 of 61

sip:(5552345)@corp.com sip:5552345@corp.co
m

$r1 =
5552345

sip:(555([0-9]
{4}))@corp.com

sip:5550717@corp.co
m

$r1 =
5550717
$r2 = 0717

3.8 Regular Expressions in the Forward To
A Regular Expression Substitution is used in the Forward To field. It refers to RegExp sub-
expressions matched and captured in the Matching Request-URI table. Sub-expressions are
numbered in the order of their starting parenthesis and referred to in $number fashion.

The Forward To attribute of the Dial Plan defines where and how to send SIP traffic. An arbitrary
string, a RegExp Substitution, or combination thereof, is used to define a destination SIP URI.

You may define lines in the Dial Plan that lack a Forward to definition. This is useful if you for
example are forwarding by ENUM.

SIP URI Example Description Equivalent Regular Expression
Fixed number: 911 @ IP Address
Fixed number: 911 @ Domain

sip:911@12.34.56.78
sip:911@sip_domain.com

Fixed 7-digit number @ IP Address sip:9630933@12.34.56.78

North American long-distance number @
Domain

sip:16139630933@sip_domain.com

North American Toll-free number: 1+800+7
digits @ Domain

sip:18668090002@sip_domain.com

Use Stored Variable $1 @ IP Address
Use Stored Variable $1 @ Domain

sip:$1@12.34.56.78
sip:$1@sip_domain.com

Use Stored Variable $1 @ Domain with Port and
Transport

sip:
$1@sip_domain.com:5060;transport=
UDP

Add To Header from ingress message into
Request URI @ Domain

sip:$(to.user)@sip_domain.com

Add To Header from ingress message into
Request URI and To Host from ingress message
into Domain and send to specified address

sip:$(to.user)@$(to.host)

Add +1 in front of To Header from ingress
message in Request URI @ Domain

sip:+1$(to.user)@sip_domain.com

Note: The table includes examples of HAVs, e.g. $(to.user), see the chapter Header Access
Variables for explanation.

3.9 Examples of Basic Regular Expressions
Here are some basic examples of some standard Regular Expressions to be used in the Forward To
columns either of the Dial Plan or the SIP Trunk page (without the use of the Generic Header

How To Guide: Generic Header Manipulation & Regular Expressions Page 20 of 61

Manipulation). The examples assume that there is a match done where $1 contains the user part of
the Request-URI from ingress.

Forward $1 to domain or IP … specify destination port with :port
sip:$1@192.168.1.1 sip:$1@192.168.1.1:5060

sip:$1@example.com sip:$1@example.com:5060

Force B2BUA on … specify UDP transport via transport parameter
sip:
$1@192.168.1.1;b2bua

sip:$1@192.168.1.1;transport=UDP

sip:
$1@example.com;b2bua

sip:$1@example.com;transport=UDP

Add + Prefix
sip:+$1@192.168.1.1

sip:+$1@example.com

Add Any Combination of the above
sip:$1@192.168.1.1:5060;transport=TCP;b2bua

sip:$1@example.com:5060;transport=TCP;b2bua

3.10 Additional information
Here are a few resources we recommend to read more about to build and test regular expressions
before they go live:

 http://www.regular-expressions.info/

 http://gskinner.com/RegExr/ or https://regexr.com/

 http://renschler.net/RegexBuilder/

 echo (Test expression) | grep -E (regexp)

How To Guide: Generic Header Manipulation & Regular Expressions Page 21 of 61

http://renschler.net/RegexBuilder/
http://www.regular-expressions.info/%20
https://regexr.com/
http://gskinner.com/RegExr/%20

4 Special Tags in the Ingate Firmware

4.1 Rewrite From header on egress

You can use the legacy method to re-write the From header on egress instead of the more complex
GHM. Add ;from= and a quoted, valid SIP URI to the end of your RegExp.

Forward To …or this… Reg Expr:
sip:$1@192.168.1.1;from="sip:+13335550000@1.2.3.4"

Note: the From header is the only header that can be changed in this legacy way i.e. using the
;uriparams format. This way, the B2BUA is not engaged.

All headers can be added or changed via GHM, i.e. ?From=…
See the chapter Generic Header Manipulation (GHM).

Do not use legacy ;from= together with newer GHM From=… you will get unpredictable results.

4.2 183 to 180 conversion
If you want to convert a 183 Session Progress at ingress from the ITSP to a 180 Ringing on egress
towards the PBX add ;cnv183 to the Domain Name or IP Address in the Service Provider
Domain field at the SIP Trunk page. Note: this method should remove SDPs.

Service Provider Domain:
10.20.30.40;cnv183

4.3 Do not REGISTER to trunk server(s)
When using registration (REG = Yes) and a fallback domain, the Ingate will normally SIP
REGISTER to both. Adding the ;no-reg flag to either of the domains will skip registering to that
domain.

Add ;no-reg to the Domain Name or IP Address in the Service Provider Domain field at the SIP
Trunk page. Requires firmware >= 6.0.3.

Service Provider Domain:
10.20.30.40;no-reg,10.20.30.41

This disables sending of REGISTER to a proxy when multiple proxies are entered in the Service Provider
Domain.

How To Guide: Generic Header Manipulation & Regular Expressions Page 22 of 61

4.4 Do not automatically monitor trunk server(s) with SIP OPTIONS
When using registration & a fallback domain, adding the ;no-mon flag to either of the domains will
skip auto monitoring that domain. Auto-monitoring commences after the Blacklisting timeout
duration after the first successful registration to the ITSP.

To cease monitoring of an ITSP proxy domain, add ;no-mon to the Domain Name or IP Address in
the Service Provider Domain field at the SIP Trunk page. Requires firmware >= 6.0.3. In firmware
>= 6.0.3, SIP Trunk servers are automatically monitored.

Service Provider Domain:
sip.itsp.com,sip2.itsp.com;no-mon

This disables sending of SIP OPTIONS to a proxy when multiple proxies are entered in the Service Provider
Domain.

4.5 Force B2BUA on

Forward To …or this… Reg Expr:
$1@192.168.1.1;b2bua

4.6 B2BUA with media via the main dial plan
In order to relay media i.e. to anchor media at the SBC when e.g. releasing or diverting calls back to
the operator – this option is synonymous with the “Relay media” trunk page option: on the main dial
plan, add ;b2buawm. A bug in later 5.0.x firmware series prevented this expression from working
properly and was fixed in the 6.0.2 firmware. Note, you must have a matching RegExp for the $1
parameter to be filled. This RegExp is used on the main Dial Plan, Forward To rows:

Forward To …or this… Reg Expr:
$1@10.20.30.40;b2buawm

4.7 Explicitly state transport
SIP RFC 3261 specifically states that two URIs are not synonymous if a port or implied parameter is
absent in one but present in a second while all other parameters are equal. For implied parameters,
such as transport, their presence – or absence – can be important. A UAC must specify its transport
when registering to a proxy, if it is not UDP:

Reg Expr:
john@10.20.30.40;transport=tcp

Note that RFC3261 deprecates the use of transport=tls although its use on an Ingate is accepted for
compatibility. If an ITSP Contact: header contains the transport parameter transport=tcp in
one response, but removes it in another response – implying the SIP default transport=udp – the

How To Guide: Generic Header Manipulation & Regular Expressions Page 23 of 61

https://tools.ietf.org/html/rfc3261#section-26.2.2
https://tools.ietf.org/html/rfc3261#section-19.1.4

transport will be deemed to have changed on the ITSP side, and the Ingate will contact the new
destination. If the ITSP cannot handle this transport change (where two independent daemons listen
for traffic via the two different transports which may be unaware of each other), this is an error that
the ITSP must correct.

4.8 Specifying Escape Characters (dial string) for e.g. Telia SIP trunk
Reg Expr:
;escape-chars=*#

4.9 Explicitly handle only specific METHODS
Requires firmware >= 4.10.1
Reg Expr – as a tag to a regular expression:
;methods="ACK,INVITE,CANCEL,OPTIONS"

The above regular expression has the effect that only the named SIP methods ACK, INVITE,
CANCEL and OPTIONS are to be handled. Note that BYE cannot be handled in the dial plan.

E.g. (under main dial plan)

Matching RURI:
sip:172.18.137.113@{0}

Forward To Reg Expr:
10.3.1.1;methods="OPTIONS"

The above expression has the effect that only the SIP method OPTIONS is handled/affected.

e.g. (under SIP Traffic Routing User Routing)

User:
bob@proxy.lan

Action:
Parallel

Forward to:
sip:bob@presence-server.corp.lan;methods="PUBLISH,SUBSCRIBE,INFO"

4.10 Force a specific response, e.g. 503, 5xx, 6xx
Requires firmware >= 6.2.2

Add ;respond="xxx" to Reg Expr in Forward To. If found, a SIP response with the specified
status code xxx is sent. Note: the code must be surrounded by quotes ("xxx"). It can take 1
parameter: ?Retry-After=yyy which adds such a header to the response being sent.

How To Guide: Generic Header Manipulation & Regular Expressions Page 24 of 61

sip:172.18.137.113@

Note: ?Retry-After is not a real GHM, it just uses the same syntax.

If you wish to put the Ingate into a maintenance mode and reject new requests with 503 which
include a Retry-After header with a value of 1800 seconds (30 minutes).

Forward To Reg Expr:
;respond="503"?Retry-After=1800

Add a new dial plan row at row 1 which uses only this Forward To and this will respond to all traffic
with your specific code. For example:

Forward To

Name
No
.

Use
This ...

... Or This ... Or This
... Or
This Use

Alia
s IPAccou

nt
Replaceme
nt Domain

Por
t

Transpo
rt

Reg Expr
Trun

k

SERVIC
E

1 - - ;respond="503"?Retry-After
=1800

- -

Dial Plan

No.
From

Header
Request-

URI
Action

Forward
To

Add Prefix ENUM
Root

Time
Class

Comment
Forward ENUM

1 - - Forward SERVICE - - SERVICE
503

If you wish to reject new requests with a 600 e.g.

Forward To Reg Expr:
;respond="600"

4.11 Support q-value in Trunk User Name
Requires firmware >= 6.2.0

Add the tag ;q=0.5 in the User Name field on the Trunk page to add the q-value as a parameter to the
Contact header in REGISTERs sent from the Trunk page.

e.g.

Main Trunk Line

How To Guide: Generic Header Manipulation & Regular Expressions Page 25 of 61

No. Reg
Outgoing Calls Authentication Incoming Calls

Display
Name

User Name Identity
User
ID

Password
Incoming

Trunk Match
Forward

to

1 No mytrunk;q=0.7

4.12 Support parallel forward in the dial-plan

Requires firmware >= 6.3.0

Add the tag; parallel in the "Reg Expr" field in the "Forward To" table in the "Dial Plan". This makes
the Forward To sub-rows send in parallel (as opposed to send in sequence).

e.g.

Forward To

1 ;parallel Trunk 1

2 ;parallel Trunk 1

Or

Forward To

1 sip:$1@192.168.1.10;parallel

2 sip:$1@192.168.1.11;parallel

-End chapter-

How To Guide: Generic Header Manipulation & Regular Expressions Page 26 of 61

5 Header Access Variables

5.1 Headers

The Ingate firmware has a range of variables for use in RegExp and GHM which provide (currently)
read-only access to any header, URI, or part thereof. Variables must be enclosed in $(…) or $
([…]). Where a SIP URI is:

dname <sip:user:password@host:port;uriparams>;params

Variable [URI.portion] Explanation
cfg .user The user part of the Local Registrar account

.host As above, host part.
ruri .user User part of Request-URI

.host Host part.

.uriparams URI parameters.
header_name

These parts only
work on headers

which contain
valid <sip:...>

URIs e.g.: From,
To, Request-
URI, Route,

Record-Route,
Contact, etc.

.user User part of header_name

.userinfo User, password, trunk-params, found at ingress up to the @
symbol.* Everything between sip(s): and @

.userinfoat2 As above*, but includes the final @.

.password Password part of "header_name" (e.g. to.password). *

.cpassword2 As password; but output is prepended with colon
(“:password”) 2. Evaluates if
header_name .userinfo contains a password. *

.host Host part of header_name

.port Port part of header_name **

.cport2 As port, but prepended with a colon “:”. Evaluates if
header_name contains a port. **

.dname Display name of header_name if present.

.dnameuri1 Display name and URI of header_name.***

.uqdname Unquoted display name

.params Header parameters (outside of <sip:URI>) e.g. ;tag=asdf

.uriparams Parameters within the URI: e.g. ;transport=udp

.telnum tel: URI

.uri Whole URI string (after header_name:) of a header
considered a URI ***

hdr .header_name The 1st ingress header_name instance content
.header_name
[2]

The 2nd ingress header_name instance content

rawhdr .header_name The unescaped ingress header_name content
ip .ethx The IP address of eth network interface, (e.g. ip.eth1)

1 (Ingate >= 5.0.4) 2 (Ingate > 6.0.0) * Only supplies user if no password at
ingress. **: returns null if no port value at ingress ***: includes <sip:...>
if present at ingress, but lacks params

How To Guide: Generic Header Manipulation & Regular Expressions Page 27 of 61

This is a SIP URI:
dname <sip:user:password@host;uriparams>;params

It might be constructed using these variables:
$(x.dname) <sip:$(x.user):$(x.password)@$(x.host)$(x.uriparams)>$
(x.params)

Alternatively:
$([x.dname]) <sip:$([x.user]):$([x.password])@$([x.host])$
([x.uriparams])>$([x.params])

Which would be formed by the encoded string:
$([x.dname])%20%3Csip:$([x.user]):$([x.password])%40$([x.host])$
([x.uriparams])%3E$([x.params])

This is a Header (not a URI):
Some-Header: Blah blah blah – something, version 1.2

5.2 Body Access Variable

Variable [URI.portion] Explanation
body .plain1 Returns the whole body – this is normally the SDP. For

multipart messages, this returns all content after the double
CR/LF e.g.: $([body.plain])

This is only intended to be useful to analyze the body.
1 (Ingate >= 6.2.0)

Example:

sip:$
(REGMATCH_m=video_REGMOD_videouser@mycorp.com_REGELSE_.*_REGMOD_aud
iouser@mycorp.com_REGEND.body.plain)

produces videouser@mycorp.com if the message body contains 'm=video', otherwise

it produces audiouser@mycorp.com

5.3 The difference between $(x.user) and $([x.user])

All HAV and BAV are invoked by enclosing the variable in $parentheses – i.e. the $(variable)
syntax. The same is achieved by using $([variable]) – the difference being that, if the returned
content of $([variable]) is empty, then the result is a zero-length string, i.e. no output. If $
(variable) evaluates as empty, because for example its match did not exist at ingress, the literal
string $(variable) is output. The $([variable]) syntax is available from firmware >=

How To Guide: Generic Header Manipulation & Regular Expressions Page 28 of 61

4.10.1. As a convenience, in firmware >= 6.2, an empty $(variable) returns a zero-length string,
i.e. no output.

Note: To use any variables, a regular expression match must have been done (Main Dial Plan,
Matching R-URI), together with a regular expression substitution. E.g. $1?header=…

If you only want to re-write the From header, use the legacy method in the Forward To Reg Expr
field and append a ";from=" parameter.

5.4 Port and Password

Parameters password and port are properties of an address and shall be prepended by a colon.
But a colon does not independently appear in a SIP URI without it causing a parsing problem. If you
write the expression …$(from.user)%40(from.host)%3a(from.port)… and the ingress
From header contained no port parameter, your expression evaluates to 123@192.168.1.1:
which is an invalid URI, since there is no port value after the colon. If it is unknown in advance
whether port or password would be found in an ingress SIP URI, the following workaround CHOs
(which require firmware >= 5.0.4) can help:

$(CONDIF.from.port)$(CONDYES.PLAIN.%3A)$(CONDYES.from.port)
or
$(CONDIF.from.password)$(CONDYES.PLAIN.%3A)$(CONDYES.from.password)

Convenience variables for the above are available in Ingate firmware >= v6.0:
$([header_name.cport]) yields e.g. :5060
$([header_name.cpassword]) yields e.g. :p@$$word

5.5 Indices, indexes, [?]

- index [0] is synonymous with: no index [] and index [1]; it gets the first instance of that header
- index [1] is synonymous with the first instance of that header (the one at the top)
- index [2] is synonymous with the second instance of that header
- index [-1] is synonymous with the last instance of that header (at the bottom)
- index [-2] is synonymous with the second to the last instance of that header.

e.g. Route headers rewritten as HAV:

Route: <sip:route[1].user@route[1].host;route[1].uriparams>
Route: <sip:route[2].user@route[2].host;route[2].uriparams>
Route: <sip:route[3].user@route[3].host;route[3].uriparams>

is the same as

Route: <sip:route.user@route.host;route.uriparams>
Route: <sip:route[2].user@route[2].host;route[2].uriparams>
Route: <sip:route[-1].user@route[-1].host;route[-1].uriparams>

is the same as

How To Guide: Generic Header Manipulation & Regular Expressions Page 29 of 61

Route: <sip:route[-3].user@route[-3].host;route[-3].uriparams>
Route: <sip:route[-2].user@route[-2].host;route[-2].uriparams>
Route: <sip:route[-1].user@route[-1].host;route[-1].uriparams>

5.5.1 Limit the scope of operation

?History-Info=__remove removes all History-Info headers
?History-Info[2]=__remove removes only the second History-Info header

?History_Info=something sets all History-Info headers to the same value something
?History_Info[2]=something sets only the 2nd one to something, the 1st and 3rd remain
unchanged

?History_Info=__remove&History_info=something removes all History-Info
headers and only one new History-Info header with value something is created.

5.5.2 Example INVITE - URIs and headers rewritten as variable (HAV)
names

INVITE sip:ruri.user@ruri.host:ruri.port;ruri.uriparams SIP/2.0
Via: via[1].uri
Via: hdr[2].via
To: "to.uqdname" <sip:to.user@to.host>
From: from.dname <sip:from.user@from.host>;from.params
Call-ID: call-id.user@call-id.host
P-Asserted-Identity: sip:P-Identity.user@P-Asserted-Identity.host
Contact: <sip:Contact.user@Contact.host>
Record-Route:
<sip:Record-Route[1].user@Record-Route[1].host;record-route.uripara
ms>
Record-Route:
<sip:Record-Route[-1].user@Record-Route[-1].host;record-route.uripa
rams>
Session-Expires: hdr.session-expires
User-Agent: hdr.user-agent
Supported: hdr.supported
Allow: hdr.allow
Max-Forwards: hdr.max-forwards
CSeq: 1 INVITE
...

5.6 Example equivalences of a From header (built using HAV)

From: from.dname <sip:from.user@from.host>;from.params

How To Guide: Generic Header Manipulation & Regular Expressions Page 30 of 61

is the same as

From: "from.uqdname" <sip:from.user@from.host>;from.params

is the same as

From: from.dname from.uri;from.params

is the same as

From: hdr.from

5.7 Examples

Adding From Header
sip:$1@192.168.1.1;from="sip:$(from.user)@1.2.3.4"

sip:$1@example.com;from="sip:$(from.user)@1.2.3.4"

;from="sip:$(from.user)@example.com"

*Replaces From domain at ingress with "example.com".

Compare:
;from="sip:$f1@example.com"

Replaces From domain at ingress with "example.com". $f1 refers to the Matching From Reg
Expr "(.*)@.*". While $f1 can be part of the user string, $(from.user)is the whole user
string.

The above examples assume that there is a RegExp match and capture done at an earlier stage – the
RegExp fills $1 with a result – this result is a substitution – here, the user part of the Request-URI.

Note: the From header is the only header that can be added or changed in the legacy fashion, e.g.
using the ;from= format. All headers can be added through GHM, including the From header. See
the chapter Generic Header Manipulation (GHM).

How To Guide: Generic Header Manipulation & Regular Expressions Page 31 of 61

6 Call Count Variables

6.1 Call Counters

The Ingate firmware has 1 variable for use in GHM or cURL expressions which provide currently
active call counts to the currently processing destination. It must be enclosed in $(…).

Variable [URI.portion] Explanation
count.calls_to_this_user1 An integer value of how many sessions

active with this username as destination,
identical to the username found in the To:
header of the current request

1 (Ingate >= 6.2.2)

It is not flexible; you cannot do $(count.john), but only $(count.calls_to_this_user). To
be clear: If the currently processing request (e.g. the incoming INVITE) is processed in the dialplan,
and the call is to john, and there are already 2 other calls which go to john@..., then $
(count.calls_to_this_user) will return 2. So this can be used to get (and, to send via curl)
the number of calls to a username.

Example curl expression:

sip:$curl1(counter.php?did=$(to.user)&cc=$(count.calls_to_this_user))

The REST API server responds either with the call destination, or a cause code to terminate the call.

The back-end web-service looks in a table for the given DID and checks whether there are still
available channels to allow the call, picks the destination and responds with a plain text sip
destination.

6.2 Call Count Logic

The Ingate firmware has logical comparison variables for use in GHM, and more specifically CRE,
which return TRUE or FALSE, based on an integer comparison with a call count. With this in mind,
they must be used within a CT, e.g. CONDIF. They must be enclosed in $(…).

Variable [URI.portion] Explanation
count.calls_to_this_user1 .lt.x Less than x

.le.x Less than or equal to x

.eq.x Equal to x

.ge.x Greater than or equal to x

.gt.x Greater than x
1 (Ingate >= 6.3.2)

These will also work with future variables which start with count. in case such are implemented.

How To Guide: Generic Header Manipulation & Regular Expressions Page 32 of 61

Examples in context:

$(CONDIF.count.calls_to_this_user.lt.99)$(CONDYES…)$(CONDNO…)
$(CONDIF.count.calls_to_this_user.le.17)$(CONDYES…)$(CONDNO…)
$(CONDIF.count.calls_to_this_user.eq.0)$(CONDYES…)$(CONDNO…)
$(CONDIF.count.calls_to_this_user.ge.21)$(CONDYES…)$(CONDNO…)
$(CONDIF.count.calls_to_this_user.gt.98)$(CONDYES…)$(CONDNO…)

Full example:

sip:user@mycorp.com?From=%3csip%3a$
(CONDIF.count.calls_to_this_user.eq.0)$(CONDYES.PLAIN.33)$
(CONDNO.PLAIN.44)%40nowhere.com%3e

This outputs From: <sip:33@nowhere.com> if there are 0 calls to the current callee,
otherwise it outputs From: <sip:44@nowhere.com>

Full example:

sip:conference@$(CONDIF.count.calls_to_this_user.gt.20)$
(CONDYES.PLAIN.192.168.1.11)$(CONDNO.PLAIN.192.168.1.10)

This outputs sip:conference@192.168.1.11 if there are more than 20 calls to the current
callee, otherwise it outputs sip:conference@192.168.1.10

Full example:

$(CONDIF.count.calls_to_this_user.ge.1)$
(CONDYES.PLAIN.sip:voicemail@pbx1.lan)$
(CONDNO.PLAIN.sip:joe@pbx1.lan)

This outputs voicemail@pbx1.lan if there is 1 or more calls to the current callee, otherwise it
outputs joe@pbx1.lan

How To Guide: Generic Header Manipulation & Regular Expressions Page 33 of 61

7 Conditionals

7.1 Conditional Regular Expressions (CRE)

CREs are a form of logic flow, where you can do for example:
If…x …is true, modify x to… y
Else if…q…is true, modify q to… r
On the value taken from header(.portion) at ingress.

Roughly: IF MATCH, then MODIFY, ELSE if match, then MODIFY, ELSE etc… …END.

This is the simplified general logic structure of a CRE:

The expressions are enclosed in $() – they behave as HAV, i.e. provide output for use in a GHM
e.g. $0?From=$(REGMATCH_123_... which must be URI encoded and contain %40 (i.e. an @
symbol). See later examples

The following CRE:

...$
(REGMATCH_123_REGMOD_456_REGELSE_(.*)_REGMOD_789_REGEND.from.user)
...

first reads the user portion of the From header and then performs the regular match/replace which
must be enclosed by the tags REGMATCH_ and _REGEND as above. Explanation:

How To Guide: Generic Header Manipulation & Regular Expressions Page 34 of 61

 Looks for 123 in the user portion of the From header. If the user portion contains 123, then the result is
modified to 456.

 else, tries to greedily match anything (.*) against the user portion of the From header, so the result of
the above expression would be 789.

This was a simplified example. In practice CRE can be much more complex.

7.1.1 Available statement keywords

CRE $(action…) statement keywords available for logic flow include:

$(REGMATCH_…
REGMOD_…
REGELSE_…
REGEND.…)

Note: REGMOD, REGELSE and REGEND statements cannot be orphaned, they must all be subsequent
to a REGMATCH type statement.

7.1.1.1 The REGMATCH action statement

This is the start of your logic examination. This keyword tries to perform a match using a string or
regular expression. E.g. to match the number string 123 or 456 you could use the statement:

$(REGMATCH_[0-9]{3}_…)

7.1.1.2 The REGMOD action statement

This statement outputs text based on a preceding REGMATCH statement that matched something from
the input. It actually only outputs text. Its output values are used if the preceding REGMATCH
matched. It can be augmented with e.g. $1 if the REGMATCH captured something. To modify jose
to noway you could use the expression:

$(REGMATCH_jose_REGMOD_noway_…)

7.1.1.3 The REGELSE action statement

This statement behaves identically to a REGMATCH statement, is subsequent to both a REGMATCH
statement and a REGMOD statement e.g.

$(REGMATCH_[0-9]{3}_REGMOD_000_REGELSE_jose_REGMOD_noway_…)

Because logic is evaluated serially from left to right, you may want to ensure your logic flow starts
more specifically/uniquely and then becomes more general e.g.:

$(REGMATCH_123_REGMOD_bingo_REGELSE_[0-9]{3}_REGMOD_dingo_…)

7.1.1.4 The REGEND action statement

This statement terminates a CRE analysis and is sibling to a header or its portion from ingress. E.g.

How To Guide: Generic Header Manipulation & Regular Expressions Page 35 of 61

$(REGMATCH_[0-9]{3}_REGMOD_000_REGEND.from.user)

The above statement looks for a three-digit string in the user portion of the from header.
Once your statement is closed, i.e. REGEND, if there are matches from ingress input, the $
(statement…) provides output.

7.1.2 Worked Examples

7.1.2.1 Sweden E164 Number Normalization
The following expression will perform E164 normalization based on the From header of a telephone
number (i.e. user portion) for Sweden:

 If the number starts with (^) a + followed by only digits until its end ($), leave the + and digits as is

 If the number starts with (^) 00 followed by only digits until its end ($), replace 00 with + and leave the
digits as they are

 if the number starts with (^) 0 followed by only digits until its end ($), add +46 followed by the digits after
the initial 0

 else, supply the number unmodified

The following is one continuous string:
...$(REGMATCH_^\+([0-9]+)$_REGMOD_+$1_REGELSE_^00([0-9]+)
$_REGMOD_+$1_REGELSE_^0([0-9]+)
$_REGMOD_+46$1_REGELSE_(.*)_REGMOD_$1_REGEND.from.user)...

Note: The result from the match from each REGMATCH_ tag respective REGELSE_ tag is valid only
for a replacement in the respectively immediately following REGMOD_ tag.

7.1.2.2 USA E164 Number Normalization
The following expression will perform E164 normalization based the From header of a telephone
number (i.e. user portion) for USA:

 If the number already starts with a + followed by only digits, leave the + and digits as they are

 If the number starts with 001 followed by only digits, replace the 001 with +1 and leave the digits as they
are

 if the number starts with 1 followed by only digits, add +1 followed by the digits after the initial 1

...$(REGMATCH_^001([0-9]{10})$_REGMOD_+1$1_REGELSE_^1([0-9]{10})
$_REGMOD_+1$1_REGELSE_([0-9]{10})$_REGMOD_+1$1_REGEND.from.user)...

7.1.2.3 Generic Normalization into a + prefixed 8-12 digit phone
number string

Rule

Orde
r

Look for the Prefix… …and change it (add prefix) to

1st 00 +
2nd 0 + (national) e.g. +31

How To Guide: Generic Header Manipulation & Regular Expressions Page 36 of 61

3rd + + (no change)
4th (anything) +

As a Regexp

Orde
r

Match (and capture) Modify

1st ^00([0-9]{8,12})$ +$1
2nd ^0([0-9]{8,12})$ +31$1
3rd ^+([0-9]{8,12})$ +$1
4th ^(.*)$ +$1

Expression

Match Modify
$(REGMATCH_ ^00([0-9]{8,12})$ _REGMOD_ +$1 _REGELSE_

^0([0-9]{8,12})$ _REGMOD_ +31$1 _REGELSE_
^+([0-9]{8,12})$ _REGMOD_ +$1 _REGELSE_
^(.*)$ _REGMOD_ +$1 _REGEND)

Resulting expression which operates on user portion of the From header

$(REGMATCH_^00([0-9]{8,12})$_REGMOD_+$1_REGELSE_^0([0-9]{8,12})
$_REGMOD_+31$1_REGELSE_^+(.*)$_REGMOD_+$1_REGELSE_^(.*)$_REGMOD_+
$1_REGEND.from.user)

The URI Encoded expression which produces a valid From header, taking from the user portion
of From header at ingress:

?From=%3csip%3a$(REGMATCH_^00([0-9]{8,12})$_REGMOD_+
$1_REGELSE_^0([0-9]{8,12})$_REGMOD_+31$1_REGELSE_^+(.*)$_REGMOD_+
$1_REGELSE_^(.*)$_REGMOD_+$1_REGEND.from.user)%40$(from.host)$
([from.uriparams])%3e$(from.params)

Worked Example Results

Phone # …is modified to… …due to reason
112 +112 ^(.*)$ +$1 3 digits, no 00, 0 or +

13009865555 +13009865555 ^(.*)$ +$1 11 digits, no 00, 0 or +

9865555 +9865555 ^(.*)$ +$1 7 digits, no 00, 0 or +

+9865555 ++9865555 ^(.*)$ +$1 7 digits

03009865555 +313009865555 ^0([0-9]{8,12})$ +31$1 10 digits, with 0 prefix

008009865555 +318009865555 ^00([0-9]{8,12})$ +31$1 11 digits with 00 prefix

To avoid 112 +112 you can modify the expression to:

$(REGMATCH_^00([0-9]{8,12})$_REGMOD_+$1_REGELSE_^0([0-9]{8,12})
$_REGMOD_+31$1_REGELSE_^+(.*)$_REGMOD_+$1_REGEND.from.user)

i.e.

How To Guide: Generic Header Manipulation & Regular Expressions Page 37 of 61

?From=%3csip%3a$(REGMATCH_^00([0-9]{8,12})$_REGMOD_+
$1_REGELSE_^0([0-9]{8,12})$_REGMOD_+31$1_REGELSE_^+(.*)$_REGMOD_+
$1_REGEND.from.user)%40$(from.host)$([from.uriparams])%3e$
(from.params)

Ingress number strings not 8-12 digits long will not be prefixed with a +, however.

Note: In firmware versions <= 5.0.11 you cannot use $1?From=$(...$1...) – i.e. capture
groups on the trunk page (i.e. where $1 is before and after the “?”), and $REGMATCH expressions
which also contain $1. The workaround is to use $0?From=$(....$1…). See Errata.

7.1.2.4 Forward To based on body content

The following expression in the Forward-to field of the dial-plan:

sip:$
(REGMATCH_m=video_REGMOD_videouser@mycorp.com_REGELSE_.*_REGMOD_aud
iouser@mycorp.com_REGEND.body.plain)

will forward to videouser@mycorp.com if the message body contains 'm=video', otherwise

it will forward to audiouser@mycorp.com

Note: requires firmware >= 6.2.0

How To Guide: Generic Header Manipulation & Regular Expressions Page 38 of 61

7.2 Conditional Header Output (CHO) and Conditional Body Output (CBO)
Available: Ingate >= 5.0.4

A CHO Outputs Headers, or portions thereof, based on the evaluation, or validation, of Conditions.
Similarly, a CBO Outputs the Body, or portions thereof.

CHO and CBO expressions are composed of one or more Condition Tests (CT) and one or more
Conditional Results (CR) which perform Conditional Actions (CA) or provide one or more
Conditional Output (CO).

CT – test for condition at ingress
CR – then enter a conditional branch result which

CA – perform conditional actions or
CO – provide conditional output

In its simplest form, a CHO is: CT CR CR:

$(test.…)$(resultX.…)$(resultY.…)

Their syntax is generally

$(test.header.part)$(resultX.output.header.part)$(resultY.action)
where header and part indicate the presence of URI or parts thereof at ingress.

$(test.body.plain)$(resultX.action)$(resultY.action)
where body.plain indicates body presence at ingress.

A simple CHO looks like this:
Conditional Header Output
$(CONDIF.diversion.user)$(CONDYES.diversion.user)$
(CONDNO.from.user)

$(CONDIF…) test performs a Boolean evaluation of a condition. The result statements $
(CONDYES…) and $(CONDNO…) are expressions which are subsequently evaluated and supply
output, or perform an action depending on which condition holds true.

In the above CHO, when a user portion of a Diversion: header is present in an ingress SIP
message (e.g. from the PBX), the $(CONDIF…) CHT test expression evaluates to true, i.e. the
action yes, then the $(CONDYES…) CR is reached, the CHA action expression output supplies the $
(diversion.user) header portion found at ingress, otherwise i.e. in the absence of a user
portion of a Diversion header, the $(CONDNO…) CHA action expression supplies the $
(from.user) portion of the ingress from header.

Note: This CHO expression evaluates to provide output, which is used to build a new header via a
GHM. See later examples.

How To Guide: Generic Header Manipulation & Regular Expressions Page 39 of 61

In older versions of this document – CHO were historically referred to as CHM (Conditional Header
Manipulation).

7.3 Conditional Test (CT)

CT statements Conditionally Test for headers or their parts. CT statement keywords are all Boolean:
they test a condition and evaluate either to true or to false. CT can also contain a CRE (i.e.
….REGMATCH_ …), since a CRE can also either pass or fail i.e. evaluate to true or to false. See the
section Conditional Regular Expressions (CRE).

This is a Boolean condition test: This is how CT operate:

7.3.1 Available CT statement keywords

All operate in a Boolean fashion: They evaluate either to true or to false based on input conditions.
All are case-sensitive: Condif is not synonymous to CONDIF.

CHT $(test…) keywords available for logic flow include:

$(CONDIF…)
$(CONDIFNOT…)
$(CONDANDIF…)
$(CONDANDIFNOT…)
$(CONDORIF…)
$(CONDORIFNOT…)

They all use the same construction hierarchy, and can contain CREs:

e.g.

$(CONDIF.REGMATCH_…)
$(CONDIFNOT.from.user…)
$(CONDANDIF.REGMATCH_…)
$(CONDANDIFNOT.diversion.domain…)

How To Guide: Generic Header Manipulation & Regular Expressions Page 40 of 61

$(CONDORIF…)
$(CONDORIFNOT.REGMATCH_…)

Example:

sip:joe@$(CONDIF.REGMATCH_test_REGEND.from.user)$
(CONDYES.PLAIN.192.168.1.11)$(CONDNO.PLAIN.192.168.1.10)

Note: ANDIF(NOT) and ORIF(NOT) type statements cannot be orphaned, they must be subsequent
to an IF(NOT) type statement to function correctly.

7.3.1.1 The CONDIF test statement

This statement; opens a CHO.

E.g. to evaluate whether a user portion of a diversion header was found at ingress:

$(CONDIF.diversion.user)

7.3.1.2 The CONDIFNOT test statement

This statement; also opens a CHO.

E.g. to evaluate whether a P-Access-Network-Info header was not found at ingress:

$(CONDIFNOT.P-Access-Network-Info)

7.3.1.3 The CONDANDIF test statement

This statement; continues a CHO; is subordinate to either CONDIF or CONDIFNOT statement.

E.g. to evaluate whether a P-Called-Party-ID header was found at ingress (in addition to prior
logic flow):

$(CONDIF…)$(CONDANDIF.P-Called-Party-ID)

7.3.1.4 The CONDANDIFNOT test statement

This statement; continues a CHO; is subordinate to either CONDIF or CONDIFNOT statement.

E.g. to evaluate whether a P-Visited-Network-ID header was not found at ingress (in addition
to prior logic flow):

$(CONDIFNOT…)$(CONDANDIFNOT.P-Visited-Network-ID)

How To Guide: Generic Header Manipulation & Regular Expressions Page 41 of 61

7.3.1.5 The CONDORIF test statement

This statement; continues a CHO; is subordinate to either CONDIF or CONDIFNOT statement.

E.g. to evaluate whether a P-Charging-Function-Addresses header was found at ingress (in
addition to prior logic flow):

$(CONDIF…)$(CONDORIF.P-Charging-Function-Addresses)

7.3.1.6 The CONDORIFNOT test statement

This statement; continues a CHO; is subordinate to either CONDIF or CONDIFNOT statement.

E.g. to evaluate whether a P-Charging-Vector header was not found at ingress (in addition to
prior logic flow):

$(CONDIFNOT…)$(CONDORIFNOT.P-Charging-Vector)

How To Guide: Generic Header Manipulation & Regular Expressions Page 42 of 61

7.4 Conditional Results (CR)

CT – test for condition at ingress
CR – then enter a conditional branch result which

CA – perform conditional actions or
CO – provide conditional output

CR statements Conditionally provide Results based on headers or their parts: they provide entry into
a branch result. CR statements contain conditional actions – CA or provide conditional output – CO.
CR are case-sensitive: Condyes is not synonymous to CONDYES.

7.4.1 Available CR keywords

CR $(result…) keywords available for logic flow include:

$(CONDYES…)
$(CONDNO…)

The following is a valid chain which provides multiple results based on a single condition: $
(CONDYES…)$(CONDYES…)$(CONDYES…)$(CONDNO…)

7.4.1.1 The CONDYES result statement

This statement is synonymous with the true condition

E.g. for a true condition:

$(CONDIF…)$(CONDYES.action.…)
$(CONDIF…)$(CONDYES.output.…)

7.4.1.2 The CONDNO result statement

This statement is synonymous with the false condition

E.g. for a false condition:

$(CONDIF…)$(CONDNO.action.…)
$(CONDIF…)$(CONDNO.output.…)

How To Guide: Generic Header Manipulation & Regular Expressions Page 43 of 61

7.5 Conditional Actions (CA)

CT – test for condition at ingress
CR – then enter a conditional branch result which

CA – perform conditional actions or
CO – provide conditional output

CA statements perform Actions. CA provide zero output. CA are case-sensitive: Abort is not
synonymous to ABORT. CA statements terminate a CR branch. CA statements are subordinate.

7.5.1 Available CA keywords

CR $(…action…) keywords available for logic flow include:

$(…ABORT…)

7.5.1.1 The ABORT action statement

E.g. to abort execution of a logic branch if a user portion of a referred-by header did not exist
at ingress, i.e. no header? Abort by providing zero output:

$(CONDIF.Referred-By.user)$(CONDNO.ABORT)
$(CONDIFNOT.Referred-By.user)$(CONDYES.ABORT)

How To Guide: Generic Header Manipulation & Regular Expressions Page 44 of 61

7.6 Conditional Output (CO)

CT – test for condition at ingress
CR – then enter a conditional branch result which

CA – perform conditional actions or
CO – provide conditional output

CO statements provide Output (which can also be zero-length). CO keywords are case-sensitive
except for header(.part): Plain is not synonymous to PLAIN. CO statements terminate a CR
branch. CO statements are subordinate i.e. must follow CR.

7.6.1 Available CO keywords

CO $(output…) keywords available for logic flow include:

$(….PLAIN.…)
$(….header)
$(….header.part)
$(….body.plain)

CRE may also be used in a CO position e.g.

$(CONDIF.from.user)$(CONDYES.REGMATCH_…)

7.6.1.1 The PLAIN output statement
This statement outputs URI encoded plain text strings.
E.g.

$(CONDIF.from.user)$(CONDYES.PLAIN.%3csip%3a1234%40company.com%3e)
$(CONDIF.from.user)$(CONDNO.PLAIN.%3csip%3aABCD%40company.com%3e)

1.1.1.1 The header output statement
This statement outputs the named URI or header from ingress.
E.g.

$(CONDIF.from.user)$(CONDYES.from)

1.1.1.1 The header.part output statement
This statement outputs the named URI or header part from ingress.
E.g.

$(CONDIF.from.user)$(CONDYES.from.user)

How To Guide: Generic Header Manipulation & Regular Expressions Page 45 of 61

7.7 Conditional Header Output (CHO) examples

7.7.1 Simple

?from=$(CONDIF.diversion.user)$(CONDYES.PLAIN.%3csip
%3a1234%40company.com%3e)$(CONDNO.PLAIN.%3csip%3aABCD
%40company.com%3e)

Explanation: If there is a user portion of a Diversion: header, then the From: header produced
will be <sip:1234@company.com>, otherwise it will be <sip:ABCD@company.com>
Resulting in either:
(CONDYES) ...

Diversion: joe@domain
From: <sip:1234@company.com>

or
(CONDNO) ...

From: <sip:ABCD@company.com>

Note: headers of the format <tel:…> are accessed not with header.user but with
header.telnum

7.7.2 More Complex Example

?from=$(CONDIF.diversion.user)$(CONDYES.PLAIN.%3csip%3a)$
(CONDYES.REGMATCH_^\+([0-9]+)$_REGMOD_+$1_REGELSE_^00([0-9]+)
$_REGMOD_+$1_REGELSE_^0([0-9]+)
$_REGMOD_+46$1_REGELSE_(.*)_REGMOD_$1_REGEND.from.user)$
(CONDYES.PLAIN.%40company.com%3e)$(CONDNO.PLAIN.%3csip%3aABCDEFGH
%40company.com%3e)

This CHO does the following:

1. Where the ingress message contains a Diversion: header, then the username portion in the From:
header (appended with “company.com”) replaces the From: header of the egress message, after
applying Sweden E164 Number Normalization example.

2. Where the ingress message from the PBX does not contain a Diversion: header, no header
manipulation is performed.

Resulting in either:
(CONDYES) ...

Diversion: ext67@company.com
From: <sip:+46812345678@company.com>

or an unmodified from header:
(CONDNO) ...

How To Guide: Generic Header Manipulation & Regular Expressions Page 46 of 61

From: <sip:0812345678@company.com>

How To Guide: Generic Header Manipulation & Regular Expressions Page 47 of 61

This Request at ingress… …With this GHM… …Becomes this request at egress
INVITE sip:zyx@ingate.com SIP/2.0
Session-Expires: 14400
Via: SIP/2.0/UDP
192.0.2.2:5060;branch=z9hG4bK4cc
To: <sip:zyx@ingate.com>
From: <sip:alpha@ingate.com>;tag=99
Call-ID: 21@sipgt-2d
CSeq: 3 INVITE
Contact: <sip:E4F0pr@192.0.2.2>
Supported: timer, replaces, path, histinfo
Allow: ACK, CANCEL, INVITE, BYE
Max-Forwards: 15
Content-Type: application/sdp
Content-Length: ...

?from=$(CONDIF.diversion.user)$
(CONDYES.PLAIN.%3csip
%3a1234%40company.com%3e)$
(CONDNO.PLAIN.%3csip%3aABCD
%40company.com%3e)

INVITE sip:zyx@ingate.com SIP/2.0
Session-Expires: 14400
Via: SIP/2.0/UDP
192.0.2.2:5060;branch=z9hG4bK4cc72853
To: <sip:zyx@ingate.com>
From: <sip:ABCD@company.com>;tag=123
Call-ID: 21@sipgt-2d
CSeq: 3 INVITE
Contact: <sip:E4F0pr@192.0.2.2>
Supported: timer, replaces, path, histinfo
Allow: ACK, CANCEL, INVITE, BYE
Max-Forwards: 15
Content-Type: application/sdp
Content-Length: ...

INVITE sip:zyx@ingate.com SIP/2.0
Session-Expires: 14400
Via: SIP/2.0/UDP
192.0.2.2:5060;branch=z9hG4bK4cc
Diversion:
<sip:gohere@xcorp.xyz;reason=no-answer>
To: <sip:zyx@ingate.com>
From: <sip:alpha@ingate.com>;tag=55
Call-ID: 21@sipgt-2d
CSeq: 3 INVITE
Contact: <sip:E4F0pr@192.0.2.2>
Supported: timer, replaces, path, histinfo
Allow: ACK, CANCEL, INVITE, BYE
Max-Forwards: 15
Content-Type: application/sdp

Content-Length: ...

?from=$(CONDIF.diversion.user)$
(CONDYES.PLAIN.%3csip
%3a1234%40company.com%3e)$
(CONDNO.PLAIN.%3csip%3aABCD
%40company.com%3e)

INVITE sip:zyx@ingate.com SIP/2.0
Session-Expires: 14400
Via: SIP/2.0/UDP
192.0.2.2:5060;branch=z9hG4bK4cc
Diversion:
<sip:gohere@xcorp.xyz;reason=no-answer>
To: <sip:zyx@ingate.com>
From:<sip:1234@company.com>;tag=555665
Call-ID: 21@sipgt-2d
CSeq: 3 INVITE
Contact: <sip:E4F0pr@192.0.2.2>
Supported: timer, replaces, path, histinfo
Allow: ACK, CANCEL, INVITE, BYE
Max-Forwards: 15
Content-Type: application/sdp

Content-Length: ...

A note about parameters: we have not included any parameters in our expression. The b2bua will add its own special ;tag parameter separately
to the new From header. Any ;tag parameter you copy from the source through the use of a $(from.params) expression will be updated
separately by the B2BUA, but other parameters will remain unchanged. If you want to include any parameters found after <sip:…> in your
result, add $(from.params) to your expression:
?from=$(CONDIF.diversion.user)$(CONDYES.PLAIN.%3csip%3a12345678%40company.com%3e)$(CONDNO.PLAIN.
%3csip%3aABCDEFGH%40company.com%3e)$(from.params)

Page 48 of 61

How To Guide: Generic Header Manipulation & Regular Expressions Page 49 of 61

7.7.3 More Complex Example - History-Info
Where forwarding information is transported via a History-Info: header, then the following should be
used:

?from=$(CONDIF.history-info[-1].user)$(CONDYES.PLAIN.%3csip%3a)
$(CONDYES.REGMATCH_^\+([0-9]+)$_REGMOD_+$1_REGELSE_^00([0-9]+)
$_REGMOD_+$1_REGELSE_^0([0-9]+)
$_REGMOD_+46$1_REGELSE_(.*)_REGMOD_$1_REGEND.from.user)$
(CONDYES.PLAIN.%40company.com%3e)

Note: that history-info[-1] refers to the last history-info header present in the SIP message from the
PBX.
Resulting in either:
(CONDYES) ...

History-Info: qwerty
From: <sip:+46812345678@company.com>

or an unmodified from header:
(CONDNO) ...

From: <sip:0812345678@company.com>

7.7.4 More Complex Example – Conditional From Header, based on To
callee

A company has an old PRI. Outbound calls are now made over the new SIP trunk. On standard calls,
they want to send the main number of the PRI out over the SIP trunks. They need to send the real
caller ID of the SIP trunks on emergency 911 calls, however.

The old PRI number is 555-101-2001.
Their new SIP trunk number is 555-777-8888.

So, if the call is to 911 i.e.
the user portion of the To header is 911,

the resulting From number is 5557778888,
if the call is not to 911 (i.e. to anything other than 911),

the resulting From number is 5551012001.
A suitable expression would be:

?from=$(CONDIF.REGMATCH_^911$_REGEND.to.user)$(CONDYES.PLAIN.
%3csip%3a5557778888%40192.0.2.2%3e)$(CONDNO.PLAIN.%3csip
%3a5551012001%40192.0.2.2%3e)

Resulting in either (911 is called):
(CONDYES) ...

From: <sip:5556668888@192.0.2.2>

Or (any other number is called):
(CONDNO) ...

From: <sip:5551012001@192.0.2.2>

Page 50 of 61

7.8 URI Parameter Chaining
You can also manipulate multiple headers this way, by chaining the header manipulations in the
usual way with the & character. The example below is like the previous History-Info example
above, plus it sets the field P-Preferred-Identity:

?from=$(CONDIF.diversion.user)$(CONDYES.PLAIN.%3csip%3a)$
(CONDYES.REGMATCH_^\+([0-9]+)$_REGMOD_+$1_REGELSE_^00([0-9]+)
$_REGMOD_+$1_REGELSE_^0([0-9]+)
$_REGMOD_+46$1_REGELSE_(.*)_REGMOD_$1_REGEND.from.user)$
(CONDYES.PLAIN.%40company.com%3e)&P-Preferred-Identity=%3csip
%3aanother_id%40shop.com%3e

Resulting in either:
(CONDYES) ...

Diversion: mike@domain
From: <sip:+46812345678@company.com>
P-Preferred-Identity: <sip:another_id@shop.com>

or an unmodified from header:
(CONDNO) ...

From: <sip:0812345678@company.com>
P-Preferred-Identity: <sip:another_id@shop.com>

Note: If you want to add a header (which did not already exist in the message) only under certain
circumstances e.g.: Replace a possibly existing Referred-By: header with a Diversion: header

?Diversion=$(CONDIF.Referred-By.user)$(CONDNO.ABORT)$
(CONDYES.PLAIN.%3csip%3a)$(CONDYES.Referred-By.user)$
(CONDYES.PLAIN.%40)$(CONDYES.Referred-By.host)$(CONDYES.PLAIN.
%3e)&Referred-By=__remove

If no Referred-By header is present, then without the $(CONDNO.ABORT) the following evaluation
results:
?Diversion=
&Referred-By=__remove

which results in an empty diversion header in the resulting message. But with the $
(CONDNO.ABORT), the resulting header manipulation string becomes ?Diversion=$
(ABORT)&Referred-By=__remove and since header manipulations with unresolved variables
will be skipped, no empty diversion header will be added. In effect becoming just:

?Referred-By=__remove

7.8.1 Illegal Chaining
The following example of chaining is illegal, and will not work:

How To Guide: Generic Header Manipulation & Regular Expressions Page 51 of 61

?from=$(CONDIF.diversion.user)$(CONDYES.PLAIN.%3csip%3a&P-Preferre
d-Identity=%3csip%3aanother_id%40shop.com%3e)

For the above example to compile, it must be corrected – note the closing parenthesis:

?from=$(CONDIF.diversion.user)$(CONDYES.PLAIN.%3csip%3a)&P-Preferr
ed-Identity=%3csip%3aanother_id%40shop.com%3e

Summary: Parameter chaining only works outside of the regular expression $() context, and cannot
be chained conditionally.

7.9 Keyword / Grammar and Syntax Summary for CHO and CRE

7.9.1 Tests
$(
[CONDIF(.REGMATCH…) |
CONDIFNOT |

CONDANDIF |
CONDANDIFNOT |
CONDORIF |
CONDORIFNOT].Header.Portion

)

7.9.2 Results
$(

CONDYES
.PLAIN.Text |
.Header.Portion |
.ABORT

| CONDNO
.PLAIN.Text |
.Header.Portion |
.ABORT

)

7.9.3 RegExp
$(

REGMATCH_
REGMOD

REGELSE
REGMOD
…

_REGEND.Header.Portion
)

How To Guide: Generic Header Manipulation & Regular Expressions Page 52 of 61

Note: Statement keywords and expressions are evaluated from left to right, i.e. forwards in their
construction.

How To Guide: Generic Header Manipulation & Regular Expressions Page 53 of 61

8 Generic Header Manipulation (GHM)

The SIP header:

Diversion: <sip:7202839130@192.168.1.1>

Can be produced by the GHM:

?Diversion=%3csip%3a7202839130%40192.168.1.1%3e

GHM for egress Requests (INVITE, REGISTER, …) are invoked by ?
GHM for egress Responses (200 OK, 180 Ringing, …) are invoked by ?!

Remove headers at egress by assigning the reserved value __remove (two underscores).

GHM are generally:

sip:URI?header=value

GHM to do multiple headers at once:

sip:URI?header=valueX&header2=valueY

And value can be composed of CHO, CRE, HAV, etc i.e.:

sip:user@host?header=CHO&header2=CRE

Characters disallowed or reserved in RFC 3261 must be escaped with a %HEX notation where HEX is
a 2-digit hexadecimal number representing the escaped character (i.e. URI-Encoded String).

The table below lists often used characters, and their corresponding URI encoded HEX value:

Character HEX Value
@ %40
: %3a
; %3b
, %2c
= %3d
< %3c
> %3e
Spaces + or %20

Note: < and > are required in the Header Value under some conditions. Consider it best practice to
always use them. Refer to RFC 3261 section 20.10.

A fully constructed expression used in a Forward To might be:

How To Guide: Generic Header Manipulation & Regular Expressions Page 54 of 61

https://tools.ietf.org/html/rfc3261#section-20.10
https://tools.ietf.org/html/rfc3261#section-25.1

sip:request-URI;tag1;tag2?header=value&header2=value2!header=value

Request-URI GHM separator
& header name

%HEX URI-Encoded header value

sip:$1@192.168.1.1 ?Diversion= %3csip%3a72839130%40192.168.1.1%3e

8.1 GHM for Requests(?...&…)

8.1.1 Adding or Replacing Headers

GHMs for Request methods (INVITE, REGISTER, OPTIONS, …) are denoted by the character ?

For GHM:
-If a specified URI exists at ingress, the header at egress is replaced.
-If a specified URI is absent at ingress, the header at egress is added.

?header=%3cUri-encoded_string%3e&header2=%3cUri-encoded_string%3e

8.1.2 Examples: GHM for Requests(?): Adding or Replacing Headers
Header GHM strings which produce it
P-
Asserted
Identity

sip:$1@192.168.1.1?P-Asserted-Identity=%3csip
%3a7202839130%40192.168.1.1%3e

sip:$1@example.com?P-Asserted_Identity=%3csip
%3a7202839130%40192.168.1.1%3e

Diversion sip:$1@192.168.1.1?Diversion=%3csip
%3a7202839130%40192.168.1.1%3e

Privacy sip:$1@example.com?Privacy=<url-encoded_string>
Multiple
headers

sip:$1@192.168.1.1?P-Asserted-Identity=<url-enco
ded>&Diversion=<url-encoded_string>

with tags sip:
$1@192.168.1.1;b2bua;from="Anonymous@10.182.0.17
8"?P-Asserted-Identity=<url-encoded_string>&Priv
acy=id

Replace
the Allow
header
(Ingate
<=5.0.6)

?Allow=ACK%2cINVITE%2cBYE%2cCANCEL%2cOPTIONS

Note: Replace %3cUri-encoded_string%3e with a valid URI-encoded header value.

How To Guide: Generic Header Manipulation & Regular Expressions Page 55 of 61

8.1.3 Removing headers

?header=__remove&otherheader=__remove

Headers specified for removal which exist at ingress, are removed at egress.

8.1.4 Examples: Removing a header
Removing Privacy Header
sip:$1@192.168.1.1?Privacy=__remove

sip:$1@example.com?P-Asserted-Identity=__remove

sip:$(ruri.user)@$(ruri.host)?Diversion=__remove

8.1.5 Indices, Indexes, [?]; limiting the scope of operation

?History-Info=__remove removes all History-
Info headers

?History-Info[2]=__remove removes only the second
History-Info header

?History_Info=something sets all History-Info
headers to the same value
something

?History_Info[2]=something sets only the 2nd one to
something, the 1st and 3rd
remain unchanged

?History_Info=__remove&History_info=something removes all History-
Info headers and only one
new History-Info
header with value
something is created.

See also Indices, indexes, [?]

8.2 GHM for Responses(?!...&!...)

8.2.1 Adding or Replacing Headers

GHM for egress Responses (200 OK, 180 Ringing, …) are invoked by ?!

?!header=%3cUri-encoded_string%3e&!header2=%3cUri-encoded_string%3e

How To Guide: Generic Header Manipulation & Regular Expressions Page 56 of 61

Example solution to Avaya display problem using P-Asserted-Identity:

sip:$1@192.168.1.1?!P-Asserted-Identity=$(to.dnameuri) Add P-Asserted
Identity Header
to all egress
responses

This adds P-Asserted-Identity to the response, with the display name and URI taken from
the To header at ingress.

8.2.2 Removing headers

?!header=__remove&!otherheader=__remove

8.3 GHM for Requests (?...&…) and Responses(?!...&!) combined in one expression

8.3.1 Adding or Replacing Headers

?!response-hdr01=%3c…%3e&!response-hdr02=%3c…%3e&req-hdr01 =%3c…
%3e&req-hdr02=%3c…%3e

1.1.1 Removing headers

?req-header=__remove&!response-header=__remove

8.4 Multiple Occurrences of the same Header
Header fields are indexed using angle brackets [x] so that one can refer to the n:th occurrence of any
header.

8.4.1 Breakout Example
The following is just one long line:
sip:$0@example.com?User-Agent=$(hdr.user-agent)
&Contact=sip%3afoo%40$(ip.eth4)%3buser%3dphone
&Organization=mycompany&Privacy=__remove
&Diversion[1]=sip%3a$(diversion[1].user)%401.1.1.1

Explanation of each Reg Expr component:

Component Explanation
sip:$0@example.com This is the Request URI, $1 expresses the first

variable captured in, e.g. from Matching Request
URI field in the SIP Traffic – Dial Plan page.

How To Guide: Generic Header Manipulation & Regular Expressions Page 57 of 61

?User-Agent=$(hdr.user-agent) User-Agent header is supplied with the value
taken from the ingress User-Agent header,
where it exists. In B2BUA mode, the Ingate
replaces the User-Agent header with its own
string.

&Contact=sip%3afoo%40$
(ip.eth4)%3buser%3dphone

The Contact Header is replaced with the IP
address of eth4

&Organization=mycompany The header Organization is added
&Privacy=__remove The Privacy header is removed.
&Diversion[1]=sip%3a$
(diversion[1].user)%401.1.1.1

The first Diversion header found, a new host
portion is entered as 1.1.1.1.

8.5 Header Access Variables

Header Access Variables can be used in GHM as for Regular Expressions. The pre-defined variables
can be used in GHM expressions. HAV provide read-only values of headers, or portions thereof
found at ingress, in the result. See the chapter Header Access Variables for a list of available
variables.

8.5.1 Header Access Variable Examples

Expression Explanation
sip:$0@example.com?Contact=sip
%3afoo%40$(ip.eth3)%3buser%3dphone

Modify Contact header with eth3 IP address

How To Guide: Generic Header Manipulation & Regular Expressions Page 58 of 61

sip:$0@192.168.1.2?from=%3Csip%3a
%2B$(from.user)%40172.16.0.1%3e

Add special character + to the from header

sip:$0?From=%3Csip%3a$
(REGMATCH_^001([0-9]{10})
$_REGMOD_+1$1_REGELSE_^1([0-9]
{10})$_REGMOD_+1$1_REGELSE_([0-9]
{10})
$_REGMOD_+1$1_REGEND.from.user)
%40$(from.host)$
(CONDIF.from.uriparams)$
(CONDYES.from.uriparams)%3e$
(from.params)

Reduce all variants of the from header
prefix 01, 1, or +1 to +1, pass any other URI
parameters

sip:$0?From=%3Csip%3a$
(REGMATCH_^001([0-9]{10})
$_REGMOD_+1$1_REGELSE_^1([0-9]
{10})$_REGMOD_+1$1_REGELSE_([0-9]
{10})
$_REGMOD_+1$1_REGEND.from.user)
%40$(from.host)$([from.uriparams])
%3e$(from.params)

Reduce all variants of the from header
prefix 01, 1, or +1 to +1, pass any other URI
parameters (alternative)

sip:$1@192.168.1.1?From=$
(from.uri)

Strip the Display name portion out of the
from header

+32$1?Diversion=+$
(Diversion.telnum)

prefix + and re-write an ingress tel: format
Diversion header to simply +…

How To Guide: Generic Header Manipulation & Regular Expressions Page 59 of 61

9 Supplementary examples from real-world support cases

How To Guide: Generic Header Manipulation & Regular Expressions Page 60 of 61

-Document ends-

How To Guide: Generic Header Manipulation & Regular Expressions Page 61 of 61

	1 Introduction
	1.1 Example
	1.2 How?
	1.3 Why GHM?
	1.4 Where do I use GHM?
	1.5 What can I do with GHM?

	2 Where to configure GHM
	2.1 SIP Traffic – Dial Plan
	2.2 Regexp match – Matching From Header
	2.3 Regexp match – Matching R-URI
	2.4 Regexp substitution and GHM – Forward To
	2.5 SIP Traffic – Routing
	2.6 SIP Trunk – Trunk 1-n
	2.7 Incoming messages
	2.8 Outgoing messages

	3 Regular Expressions – matching your input
	3.1 Introduction
	3.2 Explanation
	3.3 Standard regular-expression notation
	3.4 Escape special characters
	3.5 Routing calls using the Dial Plan and the SIP trunk Page
	3.6 Example Regular Expressions in the Matching From Header
	3.7 Regular Expressions in the Matching Request URI
	3.7.1 Examples for a trunk
	3.7.2 Special Expressions for captures made in Request-URI

	3.8 Regular Expressions in the Forward To
	3.9 Examples of Basic Regular Expressions
	3.10 Additional information

	4 Special Tags in the Ingate Firmware
	4.1 Rewrite From header on egress
	4.2 183 to 180 conversion
	4.3 Do not REGISTER to trunk server(s)
	4.4 Do not automatically monitor trunk server(s) with SIP OPTIONS
	4.5 Force B2BUA on
	4.6 B2BUA with media via the main dial plan
	4.7 Explicitly state transport
	4.8 Specifying Escape Characters (dial string) for e.g. Telia SIP trunk
	4.9 Explicitly handle only specific METHODS
	4.10 Force a specific response, e.g. 503, 5xx, 6xx
	4.11 Support q-value in Trunk User Name
	4.12 Support parallel forward in the dial-plan

	5 Header Access Variables
	5.1 Headers
	5.2 Body Access Variable
	5.3 The difference between $(x.user) and $([x.user])
	5.4 Port and Password
	5.5 Indices, indexes, [?]
	5.5.1 Limit the scope of operation
	5.5.2 Example INVITE - URIs and headers rewritten as variable (HAV) names

	5.6 Example equivalences of a From header (built using HAV)
	5.7 Examples

	6 Call Count Variables
	6.1 Call Counters
	6.2 Call Count Logic

	7 Conditionals
	7.1 Conditional Regular Expressions (CRE)
	7.1.1 Available statement keywords
	7.1.1.1 The REGMATCH action statement
	7.1.1.2 The REGMOD action statement
	7.1.1.3 The REGELSE action statement
	7.1.1.4 The REGEND action statement

	7.1.2 Worked Examples
	7.1.2.1 Sweden E164 Number Normalization
	7.1.2.2 USA E164 Number Normalization
	7.1.2.3 Generic Normalization into a + prefixed 8-12 digit phone number string
	7.1.2.4 Forward To based on body content

	7.2 Conditional Header Output (CHO) and Conditional Body Output (CBO)
	7.3 Conditional Test (CT)
	7.3.1 Available CT statement keywords
	7.3.1.1 The CONDIF test statement
	7.3.1.2 The CONDIFNOT test statement
	7.3.1.3 The CONDANDIF test statement
	7.3.1.4 The CONDANDIFNOT test statement
	7.3.1.5 The CONDORIF test statement
	7.3.1.6 The CONDORIFNOT test statement

	7.4 Conditional Results (CR)
	7.4.1 Available CR keywords
	7.4.1.1 The CONDYES result statement
	7.4.1.2 The CONDNO result statement

	7.5 Conditional Actions (CA)
	7.5.1 Available CA keywords
	7.5.1.1 The ABORT action statement

	7.6 Conditional Output (CO)
	7.6.1 Available CO keywords
	7.6.1.1 The PLAIN output statement
	1.1.1.1 The header output statement
	1.1.1.1 The header.part output statement

	7.7 Conditional Header Output (CHO) examples
	7.7.1 Simple
	7.7.2 More Complex Example
	7.7.3 More Complex Example - History-Info
	7.7.4 More Complex Example – Conditional From Header, based on To callee

	7.8 URI Parameter Chaining
	7.8.1 Illegal Chaining

	7.9 Keyword / Grammar and Syntax Summary for CHO and CRE
	7.9.1 Tests
	7.9.2 Results
	7.9.3 RegExp

	8 Generic Header Manipulation (GHM)
	8.1 GHM for Requests(?...&…)
	8.1.1 Adding or Replacing Headers
	8.1.2 Examples: GHM for Requests(?): Adding or Replacing Headers
	8.1.3 Removing headers
	8.1.4 Examples: Removing a header
	8.1.5 Indices, Indexes, [?]; limiting the scope of operation

	8.2 GHM for Responses(?!...&!...)
	8.2.1 Adding or Replacing Headers
	8.2.2 Removing headers

	8.3 GHM for Requests (?...&…) and Responses(?!...&!) combined in one expression
	8.3.1 Adding or Replacing Headers
	1.1.1 Removing headers

	8.4 Multiple Occurrences of the same Header
	8.4.1 Breakout Example

	8.5 Header Access Variables
	8.5.1 Header Access Variable Examples

	9 Supplementary examples from real-world support cases

